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ABSTRACT 

A cylindrical wawguide of radius (I is fllrd part,ially with a,n isotropic dielectric 
betaem radii b < T < a. .4 paA& travels along the guide with an offset from the 
axis at a velocity u < c. The wake fields left behind are calculated. M’e find that the 
transverse wake forces do not vanish as ye2 = I ~ (z/c)’ or in any other way when 
2’ -3 c. 

‘Operated by the Tiniversities Research Associat~ion: Inc., under contracts with the L-.S. 
Department of Energy. 



I. INTRODUCTION 

Flake field accelerators are of grea,t interest, because of their potential for provid- 
ing a very high acceleration gradient for the next generation of accelerators. Best, of 
all: it was shown experimentally that transverse deflections appeared to be small for 
dielectric-lined waveguides in cont,rast. to the large transverse wake fields measured in 
structures and plasmas.’ This is important because t,here will be small beam break up; 
which is a, traditional source of beam instabilities in linear accelerators. A complete 
understanding of the transverse wake pobential in such a diel&ric-lined naveguide is 
therefore necessa.ry. Recently, there have been some suggestions’ that t,he transverse 
wake forces may vanish as y- ’ when the velocity v of the source particle approaches the 
velocity of light c, !y-* = 1 -(v/c)‘], Th e waveguide considered consists of a cylindrical 
metallic tube of radius a with infinite wall conductivity. The tube is filled partially with 
an isotropic mat,erial with dielectric constant, c between ra.dii b < T < a. Our derivation 
with the fame waveguide shows that the transverse wake forces do not vanish when 
2’ + c. 

II. SOLUTION 

One way to solve for the wake fields is through the introduct.ion of a scalar potential 
4 and a vector potential 2. In the Lorentz gauge, hlaxwell’s equations reduce to wave 
equations for 4 and A. The mathematics is rather complicat,ed because t,he equations + 
in A are coupled in t.he cylindrical c,oordinat,e.3 The d&ail is given in t,he Appendix. 

It is well-known that the tra,nsverse electric fields I??:, and magn&c flux density B’, 
in a waveguide can always be expressed in terms of the longitudinal components Ez 
and B,. In gaussian units, these rela,tions are 

Fct x ZE; + +‘,C,B, : 

where p and t are respectively the relative magnetic permeabilit,y and dielectric constant 
of the medium under consideration. 

In the prrsence of the dielectric, E, and I3, are no longer independent. Thus there 
are t,wo variables E, and R, to solve for. The problem is therefore much simpler than 
working with pot,entials. 

The source particle carrying charge e travels with velocity 2’ = PC along the cylin- 
drical waveguide at a,n offset Q from its axis. The Illaxwell’s equations for longitudinal 

I 



fields a,re 

The charge density and current density are represented by> respectively, 

p=t s(T ; ‘“)s(e)6(2 - ?A) , (2.4) 

Jz = VP > (2.5) 

where e is the charge of the particle under consideration. N’ot,e that all the above 
quantities are function of (r,B; z,t). Let us denote the Fourier transforms in the variables 
(z - ~1) and 0 by a tilde overhead, i.e., 

E,(T, B,t,t) = F time 1-1 dWt”(“~“‘)Y’~E,,(r,w) 
m----m 

With the help of 

S(Z - &) = & J-m du&“‘)““~ : 
m 

6(’ ; %(8) = ; $ ei-“/,- kdkJ,(kr)J,(kro) , 
’ m- m 

and 

where J, is the Bessel funct,ion of order rn; Eq. (2.2) can be rewritten as 

(v+$) E,,(r,w) = &(T.W) 1 

where 

iew( I- /L@) 
&(T,w) = z (pm - yj-1 = -;tz2t 

= 
J, kdkJ,(kr)J,(kro) 

The particular solution can then be obt,ained easily as 

-&Jm(k~)Jm(h) 
kz + (u,/vy)* ’ 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

where p and t have been dropped because the pa,rt,iclr is trawling in the vacuum sector, 
and (1 -~ v’/c’) has been replaced by 7-*, The inkgration over k can be done exactly 
to become 
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where I, and K, are respectively modified Bessel function and Hankel function of 
order m. 

For the general solution, we have 

CnL(k~o)Ln(k~) O<i-<b 
&‘” = zm (2.13) 

Am[J,,,(sa)‘)i,,(~~) - L,,(sa~)Jm(s~): bsr<a, 

where 
k-i,&? and (2.14) 

and I;, is Keuman function of order m. We have assumed that the dielectric constant 
is big enough so that &’ > 1. Otherwise, there will not be any Cherenkov radiation 
produced and as a result there will not be any useful wake potential aside from space 
charge. In E,q. (2.14); the constants have been so chosen tha,t E, vanishes on the ~vall 
of the guide. 

From Eq. (2.2); I?, can also be solved: 

&nL(k~,)L(k~) O<T<b 
g3'" = nn (2.15) 

C,,,[J;(Y~)&(ST) - Y;(s~)J~(sT)] b<r<a, 

where arrangement has been made so t,hat the radial component of B, vanishes at the 
~41 of the guide. 

The four constants &,, B,, A,, and C, will be determined by matching boundary 
conditions a,t T = b; where the va,cuum meets the dielectric. At T = b, E, and R, are 

‘E - u 
zm = &;I, i q:, K, 

ii,,, = Amp, 

-v B 2rn = a;&, 
(2.16) 

I 
Bd = C,T, 

zm 

where the superscripts 2’ and d denote vacuum and dielectric respectively. In t,he above 
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t,he following abbreviations have been used: 

L = Ln(kb) , 

Km = L(kb) , 

p, = J,(sa)E’;,(sb) - ),(sa,)J,(sb) , 

T, = J;(so)Y,(sb) ~ Y;(sa)J,(.sb) : 

9:, = 9 Lm(k~o) icw 
YZ ’ 

9=-z, 

(2.17) 

fin = CnL(kro) , 

B:, = B,l,(kr,) 

Knowing E, and B,; the transverse electric field can now be comput,ed directly using 
Eq. (2.1). At the boundary T = b7 these transverse components are 

I 

E& = Wk akIA + 
w(l-0’) wb(;$ (CL t dnKm) 

& = - iv/33 
C,T:, - _ 

m,v 

L&3- 1) wb(pq3~1) 
Anpm > 

I 

IQ& = muB B;I, - 
wb(l+*) 

ivk (&&I:, + T&K;) 
w(l-132) 

id =-- mv,l3 
Irn 

wb(&?- 1) 
cn~nl 

ie.5 
,- qgi __ 1 ) ‘%nP in, 

(2.18) 

(2.19) 

(2.20) 

where 
I:, = Z&(kb) 1 

K:, = K:,(kb) , 

p:, = J,(sa)Y;(sb) - I-,(sa)J;(sb) ~ 

T:, = J;(sa)E’;(sb) ~ Y;(sa)J;(sb) 

All polarizat,ion charges and currents have been taken care of by the macroscopic mag- 
netic permeability ,u and dielect,ric constant C. Therefore, there should be no surface 
charge or current at the boundary T = b. Thus we expect 



i& = i& , 
CE,“, = .Qm ) 
B,4, = pk?t;n (2.21) 

Then, t,he boundary conditions for Bs and B, will be sa.tisfied a.ut,omatically (since we 
have only 4 constants here). The four equations obtained from Eq. (2.21) are 

Amp, = &;I,,, + dnK, , (2.22) 

ips 
~--cm& ~ 
pt/3* - 1 b($-I) 

A,p, = iQkT2BkIk + ~(f~I,+$,K,) : (2.23) 

mb - 
b(/q’3~ l)Cmrm + 

“’ Amp; = 
ptp 1 

TB;I,,, ~ iky’(&:,I;+&K:,) , (2.24) 

CT - pB:I,,, mm- (2.25) 

We solve for A, from Eq. (2.22) and Cm from Eq. (2.25). Substituting into Eqs. (2.23) 
and (2.24), we get two equations for the two unknowns EL and Z?L.; the general solutions 
of the longit,udinal electric field and magnetic flux density respectively: 

(pt,& 1)/&J:, + ??!!&!E 
? Pnl 

mm - l)I, 

m,qpt- l)Im (pt+ I)kbI; + @:% 
Y2 7, 

(&j’- 1)/&K:, ,. tip:, 

= -7; 
-? Pm 

(2.26) 

m/3(pLr- l)K, 

III. THE MONOPOLE FIELDS 

For the monopole case or m = 0, the square matrix on the left side of Eq. (2.26) is 
diagonal and the lower element of the right-hand matrix vanishes. We obtain immedi- 
ately Bh = 0; or there is no longit,udinal magnetic field. The longit,udinal elccbric field 
for the region Q < T’ 5 b is 

i,,, = &&(kr) t q;Ko(kr) : (3.1) 

where 
E, = -9, (wPZ--)kk-;I i y-2d,Ko/po 

0 ’ (pt/!Y- l)kl:, $ y-%sp;I,,/po 
(3.2) 
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For vanishingly small 5, 

lo(z) --f 1 1 d;(z) --t ; : 

&(z) + --, In M 
2 ’ 

+Iqz) --) - 1 

Therefore, Ezo becomes 

Ezo = do(h) b-l)PO lo(kr) h’,(kr) 
pb + (sb/2c)po csb 1 y > 

(3.3) 

(3.4) 

where v is given in Eq. (2.17) 

The transverse forces on any charge e traveling with velocity 2: behind the source 
can be obtained from the Panofsky-Wenzel theorem, and are related to the longitudinal 
electric field by 

el~aE,, 
Fm=~-, 

ko8, = yEEzrn 
2WT 

Although Foe = 0, it is evident, that the ra.dial transverse force Fro is not zero since 
E,, clearly depends on T through I,(kr) and Ko(kr). However since k = w,‘y-o, this 
dependence is very small at large 7. In fact, it can be easily shown that 

F,,, = qy-27) or qpr-‘) : (3.7) 

in the region T~ < T < b, and vanishes when y + CC. This reminds us of the behavior 
of the space-charge forces which also go to zero as y-‘. 

However, in the presence of a dielectric lining, the longitudinal electric field tends 
to a, nonzero limit, as y + 30. Using Eqs. (2.6) and (3.4). we obtain 

&Jr,z,t) = - 
ie&Fi m 

I Tcbc -cE 
&&(“‘)/CPO 

pb + (sWt)pa ’ 
(3.8) 

with s = wJjX/c. We next change t.h e variable of int,egration to s and integra,te in 
the complex s-plane. To satisfy causalit,y, the poles of the integrand are placed slightly 
below the real s-axis. Since p. is even and pb + (sb/2t)P o is odd, we obtain for z < ct: 

Ezo(~,~,t) = -$ c PO 

,, 2 [pb + (sQc)poj 
(3.9) 
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N-here sx is the A-th positive root of 

sb 
Pb t ,Po = 0 (3.10) 

This result is in complete agreement with that of Gai.’ Lots of physics are embed- 
ded in Eq. (3.9). Cherenkov ra.diat,ion is produced inside the dielectric at an angle 
sin-‘(l/flc) with the axis of the guide. Because the velocity of light in the dielectric 
t = c/e is less than the velocity of the source particle, this radiation bounces back 
and forth inside the dielectric la,yer and penetrates into t,he central vacuum region of 
the guide, creating a wake potential lagging behind. It is this pot.ent,ial that we hope 
would perform the required acceleration on other particles. 

IV. HIGHER-MULTIPOLE FIELDS 

For the higher multipole, i.e., m # 0, the longitudinal magnetic flux density is no 
longer zero. The square ma,trix in Eq. (2.26) is not diagonal, but both &k and B& can 
be solved easily. The result will be different, from t,hat of Gai. 

When m + 0, Eq. (2.26) can be rewrit,ten as 

( kbI; tk=b p:, Bb-1) 

dn 3 mpnl pp= - 1 

C-1) kbI; pk2b T:, 

i pt,B-1 ml, s mr, 

(4.1) 

where we ha.ve used t,he relation (s/k)’ = y’(&- 1). Employing thr small-argument 
expansions of the modified Bessel functions for m # 0: 

K,(z) = (m;l)! (;>-, [I + 0 c;)‘] , 



zKL(z) = -$ (;j-” [l- (3 (;)‘I : 
WC obtain 

kbl:, 
~ = 1 i 0 (1-z) 
ell 

and 
kbK:, 
~~ = --I +~ 0 (7-Z) 
mK, 

(4.2) 

(4.3) 

Therefowl Eq. (4.1) for Ck and ZS& becomes 

(:y: :I::) (y -+( -y ) ’ (4.4) 

where aI, az, Q, and Q are c?(y-‘). The 1 ‘s in the above matrix elements and the 
signs before them are extremely important. The four l’s in the square matrix lead to 
a near cancellation of the determina,nt, leaving behind 

det, = (a, ~ 2~x2 t Q) t (ala3 - 2~;) , (4.5) 

which is C’(ym2). The -1 and +I in the right-hand matrix, on the other hand, add 
ahen solving for && and Z?k. Keeping the lowest order contribution. w-e obta,in simply 

E, = X7 Km 
m detI,’ (4.6) 

The corresponding longitudinal electric field is therefore 

E,, = ~~~I.,,(kr,!l,(kr) + (4’7) 
m 

D(s) = y* x detm 
7-m (4.8) 

File see clearly that I!?Z,, and therefore the transverse forces do not vanish in the limit 
7 i oc. 

Now, let us evaluate the determinant. Using the sma,ll-argument, expa,nsions of the 
modified Bessel functions in Eq. (4.2), we get 
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1 

-?@ = pLt-1 

s2b2 +Cn 
2m.(mtl) mr, 1 

(4.9) 
From Eqs. (4.5) and (4.8); we have 

D(s) = 1 
s=b2 +L /ubr:, 

PE-1 m(m-l)-mp,+ mr, 
~ ~ (vtl) 1 (4.10) 

Substitute the results in Eq. (4.7) and then Eq. (2.6). Ti me int,egrabion is then performed 
in the complex s pla,ne t,o obt,ain for 2 < ct? 

E,,(r,z,t) = 8 

where so is the A-th positive root of 

qs) = g + 9 i y!$? _ m(pci- 1) = 0 

Thus, for m # 0, E,, does not vanish when y + 0~. The transverse wake forces can 
be obt,ained readily by Eqs. (3.5) and (3.6), and they also do not vanish as y + 0~. 

V. DISCUSSIONS 

(1) We see that for the higher-order multipoles, the longit~udinal and transverse 
wake forces are of the same order of magnit,ude as the monopole longitudinal wake force 
with respect to 7-‘. In apparent contradiction to what was observed experimentally. 
Experimental observations were made using a source bunch ha,ving a gaussian extension 
with rms lengt,h CT~. If the center of the bunch travels according to z = cl, the wakes 
behind aw given by Eq. (3.9) and (4.11) with each term in the summand multiplied by 

exp [-; ($!pJ] 

Consequently, only the first one or two characteristic waves will contribute significantly. 
If the lowest wave numbers .s~ for higher-multipole wakes were Vera much larger than the 
lowest ware number of the monopole wake, t,he higher-multipole \\-akes and therefore the 
transverse forces would be suppressed. However, such a possibility is not encouraging. 
For a cylindrical waveguide without dielectric lining, the lowest propagat,ing mode is 
TE,o. which is lower than T&o. This leads us to believe that the dipole mode in the 
dielectric-lined naveguide has the lowest, charact,eristic frequency. 
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(2) For a particle of charge e traveling with velocity ~2 in a TE field (E, = 0): the 
transverse force can be easily expressed by using Eq. (2.1). 

1 
p = - eB,TE(fl - pp) 
F,TE = @y/3 - ,&,) 

(5.2) 

If the electromagnetic field is purely TM (B, = 0): the transverse force is 

$TM 
t = &yl ~ &,,a) (5.3) 

In the above; &, = v,/c and Q, is the phae velocity of the electromagnetic wave in 
t,he z-direction. There is a theorem which saxs that an electromagnetic nave can be 
writ,ten as a linear combination of a TXwave, a TE-wave, and a TERI-wave. Our 
wake field inside the dielectric waveguide certainly obeys the theorem, but without 
TEN contribution. Therefore, if the test particle has a velocity z’ equal to the phase 
velocit,y tzp of the electromagnetic field, t,he TE part of the transverse force on t,he t,est 
particle will vanish according to Eq. (5.2). and the TM part of the transverse force 
will be suppressed by y’ according to Eq. (5.3). H owever: this suppression is cancelled 

b>- the fact. that I?:” in vacuum is of order yz as illustrated by the part involving &A 
in Eqs. (2.18) or (2.19). If t,h e electromagnetic fields inside the waveguide were not 
wake fields left by a particle but were excited by some other means, there would not 
be such enhancement of I?:,‘” and the 7’ suppression of the transverse force would 
become realistic. An example is the dielectric particle sepamtor designed by Chang 
and Da\~son.~ 

However! it is also difficult to understand xhg t,he transverse fields can be of order y2, 
The Lorentz contracted fields of a particle is of order 7 with an opening a,ngle O(y’) 
so t,hat the total flux is independent of 1. Here, instead of a, small opening angle: 
the transverse fields are distributed longit,udinally as a cosine function as illustrated 
by Eqs. (3.5): (3.6). a,nd (4.11). The total transverse flux will blowup as y2. A closer 

examination of Eqs. (2.18) or (2.19) reveals that $:“. t,he part involving Bk, is also 
of order 7’. The contribution of the source, the part involving C, is 0(l). MYth the 
solution of &k and Bk from Eq. (2.26): WC find that the mystery is solved, because the 
yz part,s of ETE and 2:” cancel exactly, laving E, finite as y ~-4 0~. 

‘The a,uthor would like to t,hank Drs. Eric Chojnacki: M:ei Gai, Sekazi hltingwa. 
Jim Rosenzweig. Mike Rosing, Paul Schoessoa, and James Simpson for useful and 
encouraging discussions. 
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APPENDIX 

IYe introduce a scalar potential 4 and a vector potential .i: defined bJ 

ii=-?X., (A.11 

In order to transform Maxwell’s equations indo independent inhomogeneous equations 
in 4 for 2, 

.i?2+!E!T=-!T~ 
t (A.21 

pLe a*“i 4lTp.i vi- ~at2 = -~ 
c ’ (A-1.3) 

with f= ptT! use is made of the Lorentz condition 

fL~L!eL, 
c at 

(A.4) 

Kot,e that in cylindrical coordinate. 

1 T iv%, (A.5) 

In other words> the equations for A, and ‘-I# are coupled. Because of the symmetry of 
Eqs. (A.2) and (A.l), one is tempted to assign 

A’= zilch. (A.6) 

This simplifies the problem tremendously because it leaves behind only one equation in 
one variable. However, Eq. (A.6) may not be correct. In fact. the relation between C$ 
md A has been given explicitly by Eq. (A.4). Any additional constraint can arise only 
from the specialit>- of the problem. For examples Eq. (A.6) can be correct if (1) (.i,d) 
rotates as a. 4-vector in the Minskowski space and (2) tl me is no longitudinal magnetic 
field (TM modes). But, in the presence of dielectric, spa.ce-time does not constitute a 
Minskowski space and t.he electromagnetic fields do not separate into pure TE or TM 
modes. 
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